AUD-16.6 HBP: An Efficient Block Permutation Solver using Hungarian Algorithm and **Spectrogram Inpainting for Multichannel Audio Source Separation**

Li Li^{1,2}, Hirokazu Kameoka¹, Shogo Seki¹ 1 NTT Communication Science Laboratories, NTT Corporation, Japan 2 Nagoya University, Japan

Training data	101 speakers from WSJ0
Test data	18 different speakers from
Speaker # in each mixture	2, 3, 6, 9, 12, 15, 18
Sample #	10 samples / condition
Reverberation time	about 50 ms
Sampling rate	16 kHz
Window length / shift	256 ms / 128 ms (Hamm

Block permutation problem: Permutation inconsistencies in

- temporally correlated in nearby frequency bins [Murata+'01]

2 4 6 8 10 12

• Utilizing the assumption that frequency components of the same source are

Research objective

To solve block permutation problem and further improve source separation performance while considering

1.no usage of additional spatial information 2.low computational complexity

— Itakura-Saito (IS) divergence between inpainted reference and temporally separated spectrograms $c_{jj'}^{(k)} = \sum_{f \in \mathcal{F}_k} \sum_n \left(\frac{y_{j'}(f,n)}{\tilde{v}_{j,l}(f,n)} - \log \frac{y_{j'}(f,n)}{\tilde{v}_{j,l}(f,n)} - 1 \right)$ Assignment problem To minimize the total cost when assigning M jobs to M different works

$$\mathbf{A}\rangle_{\mathrm{F}}, \text{ s.t. } a_{pq} \in \{0,1\}, \forall p \; \sum_{q} a_{pq} = 1, \forall q \; \sum_{p} a_{pq} = 1$$

Pairwise cost matrix Assignment matrix (Permutation matrix) — Hungarian algorithm [Kuhn'55]: an efficient algorithm having computational complexity of $O(M^3)$

	Average			channels	nd
		18	15	12	
Long silence periods : +1.47	17.83	13.29	13.84	14.77	99
	19.30	13.66	15.69	15.69	7
Short silence	19.83	16.04	18.53	17.15	56
periods : +3.97	23.80	18.38	21.28	19.85	5

• HBP was effective in improving multispeaker separation by successfully correcting block permutation errors.

• However, the performance may be affected by long silence periods due to the lack of temporal information for dissimilarity measurement.