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ABSTRACT

This paper proposes a method called “Hungarian Block
Permutation (HBP)” to solve the block permutation prob-
lem in frequency-domain multichannel audio source sepa-
ration. Many methods for frequency-domain multichannel
audio source separation are designed to simultaneously solve
frequency-wise source separation and permutation alignment
in determined cases. However, in practice, separation can
fail due to permutation inconsistencies in different frequency
blocks for various reasons, such as convergence to a locally
optimal solution as a result of bad initialization. To correct
permutation inconsistencies, the proposed HBP method first
masks, for each separated signal, the frequency bands where
the components from other sources are likely to be domi-
nant, and then restores the components in those bands so
that the restored spectrogram becomes closer to the original
spectrogram of the corresponding source. The Hungarian
algorithm is then used to perform permutation realignment
in those bands in accordance with the restored spectrogram.
The experimental results show that the proposed method can
solve the permutation realignment and improve the separation
performance even in the case of 18 speakers.

Index Terms— Multichannel source separation, block
permutation, Hungarian algorithm, audio inpainting

1. INTRODUCTION

Techniques for separating individual source signals from
recorded mixture signals play an important role in audio-
based applications such as automatic speech recognition
(ASR) and teleconferencing. In situations where a sufficient
number of microphones are available, frequency-domain
blind source separation (BSS) is very useful, as it requires
no prior knowledge and allows for efficient algorithms to be
implemented.

For example, frequency-domain independent component
analysis (FDICA) [1] is a widely used approach, which ap-
plies complex-valued instantaneous ICA for each frequency
bin. Since the order of the separated signals obtained for each
frequency is arbitrary, it is necessary to group the frequency
components originating from the same source after separa-
tion. This problem is called permutation alignment, and sev-
eral solutions have been proposed. One idea is based on the
assumption that frequency components of the same source
are temporally correlated in nearby frequency bins [2]. An-
other idea involves utilizing direction-of-arrival (DOA) esti-
mation [3]. When the geometry of the microphone array is
known, the DOA of sources can be roughly determined from
the directivity patterns formed by a demixing matrix [4]. Inte-
grating the above two clues has been confirmed to be effective
in improving performance [5]. Recently, some attempts have
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also been made to solve the permutation problem in a data-
driven manner by training a deep neural network (DNN) to
identify whether two narrowband frequency components be-
long to the same source [6].

Some methods have been proposed to solve permutation
alignment as part of the optimization problem for BSS, rather
than as a post-processing step [7]. One of the most frequently
used ideas is to utilize the frequency dependence of each
source. Independent vector analysis (IVA) [8, 9] assumes
that the magnitudes of the frequency components originating
from the same source vary coherently. Independent low-rank
matrix analysis (ILRMA) [10] utilizes the concept of non-
negative matrix factorization (NMF) [11] to model the time-
frequency structures of sources. The multichannel variational
autoencoder (MVAE) [12], and independent deeply learned
matrix analysis (IDLMA) [13] adopt DNNs to capture the
time-frequency structures. In these methods, it is generally
preferable to simultaneously perform permutation alignment
and frequency-wise source separation since the clues for
permutation alignment are also useful for source separation.
However, in these methods, the phenomenon called block per-
mutation imposes a limitation on the performance. The block
permutation problem refers to the permutation inconsisten-
cies in different frequency blocks. These inconsistencies can
occur for many reasons, such as improper initialization, the
inability of the source model to properly capture the depen-
dencies between distant frequency bins in each source, and
the inability to flexibly represent the time-frequency structure
of each source [14, 15]. Existing approaches to mitigate the
block permutation problem fall into two main types. One is to
utilize spatial information [15–17], and the other is to further
improve the source model [14]. Recently, a user-interactive
method that allows users to annotate the permuted frequency
blocks has been proposed, focusing on the fact that the bound-
aries between frequency bands where block permutation have
occurred are often visually recognizable [18].

In this paper, we propose a flexible framework called
“Hungarian Block Permutation (HBP)” to solve the block
permutation problem. There are two key ideas in HBP: The
first idea is to mask, for each separated signal, the frequency
bands where the components from other sources are likely
to be dominant, and then to use spectrogram inpainting to
recover the components in those bands with the expectation
that the restored spectrogram becomes closer to the original
spectrogram of the corresponding source. For spectrogram
inpainting, any method (such as [19, 20]) can be used. The
second idea is to use the Hungarian algorithm, also known as
the Kuhn–Munkres algorithm [21], to perform permutation
realignment in those bands in accordance with the restored
spectrogram. The proposed framework is noteworthy in that
it requires no geometry information or human interaction and
is general enough to be integrated into most existing algo-
rithms. As an example, we describe how to apply the HBP
method to FastMVAE2 [22], a recently proposed accelerated
version of the MVAE method, and demonstrate its efficiency.
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2. BLOCK PERMUTATION PROBLEM

Let us consider a determined situation where I source sig-
nals are captured by I microphones. We use xi(f, n) and
sj(f, n) to denote the short-term Fourier transform (STFT)
coefficients of the signal observed at the ith microphone and
the jth source signal, where f = 1, . . . , F and n = 1, . . . , N
are the frequency and time indices, respectively. If we use

x(f, n) = [x1(f, n), . . . , xI(f, n)]
T ∈ CI , (1)

s(f, n) = [s1(f, n), . . . , sI(f, n)]
T ∈ CI , (2)

to denote the signal vectors, the relationship between the ob-
served signals and source signals can be approximated as

s(f, n) = WH(f)x(f, n), (3)

W(f) = [w1(f), . . . ,wI(f)] ∈ CI×I (4)

based on the instantaneous mixture model. Here, WH(f) is
the demixing matrix, and (·)T and (·)H denote the transpose
and Hermitian transpose, respectively. The goal of BSS is to
determineW = {W(f)}f solely from the observation X =
{x(f, n)}f,n by maximizing the likelihood ofW given X .

If we further assume that sj(f, n) independently follows
a zero-mean complex proper Gaussian distribution with vari-
ance (power spectral density) vj(f, n) = E[|sj(f, n)|2] and
that sj(f, n) and sj′(f, n) (j 6= j′) are independent, the log-
likelihood to be maximized becomes

log p(X|W,V) =c 2N
∑
f

log |detWH(f)|

−
∑
f,n,j

(
log vj(f, n) +

|wH
j (f)x(f, n)|2

vj(f, n)

)
, (5)

where V = {vj(f, n)}f,n,j and =c denotes the equality up to
constant terms.

As in the methods described above, introducing a para-
metric source model to express V allows us to simultaneously
solve permutation alignment and frequency-wise source sep-
aration through maximization of (5). However, many of the
existing source models are sometimes too flexible, and can
represent an irregular spectrogram such that the components
of a certain frequency band are completely replaced by those
from another source, resulting in permutation errors. This sit-
uation is called block permutation. This amounts to obtaining
a suboptimal solution

Ŵ(f) = PkW(f), f ∈ Fk (6)

in frequency block Fk. Here, Fk, k = 1, . . . ,K is a set of
frequency bins in the kth frequency block, and W(f) and Pk
denote the optimal demixing matrix and permutation matrix,
respectively. Therefore, if we can estimate a permutation ma-
trix P−1k = PT

k to realign the correspondence between the
frequency components in Fk and the signal to which it be-
longs, we can solve the permutation in the frequency block
Fk by multiplying it by the estimated demixing matrix,

W(f) = PT
kŴ(f), f ∈ Fk. (7)

Note that this problem is equivalent to the frequency-domain
permutation problem when ∀k ∈ {1, . . . , F}, Fk = {k}.
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Fig. 1. An illustration of the HBP method for a two-channel
case, where L = 1,K = 3.

3. PROPOSED METHOD

3.1. Assignment problem and Hungarian algorithm

The problem of assigning the frequency component of each
separated signal to which source can be treated as a balanced
assignment problem, where the goal is to assign each job to
a different worker in a way that minimizes the total cost. Let
us consider the case of M workers and M jobs, where the
cost of the pth worker performing the qth job is cpq . Here,
p = 1, . . . ,M and q = 1, . . . ,M are the indices of the worker
and job, respectively. The assignment problem is to find an
assignment matrix A = {apq} ∈ RM×M that optimizes

argmin
A
〈C,A〉F, (8)

s.t. apq ∈ {0, 1},∀p
∑
q

apq = 1,∀q
∑
p

apq = 1,

where C ∈ RM×M is the pairwise cost matrix consisting of
cpq , and 〈·, ·〉F denotes the Frobenius product. Note that A is
equivalent to the permutation matrix P that we want to find.

The Hungarian algorithm is one efficient way to solve the
above optimization problem. It assumes that there are two
sets of real numbers, 1 u = {u1, u2, . . . , uM} and ∇ =
{r1, r2, . . . , rM}, satisfying

∀ (p, q), cpq − up − rq ≥ 0, (9)
∀ (p, q) ∈ {apq = 1}, cpq − up − rq = 0, (10)

so that the total cost z = 〈C,A〉F in (8) can be expressed as

z =

M∑
p=1

M∑
q=1

(cpq − up − rq)apq +
M∑
p=1

up +

M∑
q=1

rq. (11)

(11) indicates that subtracting constants up and rq from any
row and column of the cost matrix does not affect the opti-
mal assignment. By using this fact, the Hungarian algorithm
provides a way to find the optimal assignment by iteratively
subtracting a constant from a row or column of the pairwise
cost matrix C. The procedure is summarized as follows.

1. Find the minimum value in each row and subtract it
from each element in that row. Then, perform a similar
procedure for each column.

2. Determine if one 0 can be selected from each row and
each column. If not, proceed to the next step. If it is
true, the pair of coordinates is the optimal assignment.

3. Cover all zero elements in the pairwise cost matrix by
marking as few rows and columns as possible.

1u and ∇ can be obtained by solving the duality problem of (8) [23].
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4. Subtract the minimum values from the unmarked el-
ements and add them to the marked elements. Then,
return to step 2.

Compared to the exhaustive search of M ! possible permuta-
tions, the Hungarian algorithm can reduce the computational
complexity fromO(M !) toO(M3). Owing to this advantage,
the Hungarian algorithm has been applied to many assign-
ment problems, including permutation invariant training [24].

3.2. Hungarian Block Permutation

Once the pairwise cost matrix C has been obtained, the op-
timal assignment matrix A can be found efficiently by using
the Hungarian algorithm. One possible way to obtain the pair-
wise cost matrix would be to compute the temporal correla-
tion between the components of adjacent frequencies or the
proximity of the DOAs in different frequency bins, like in the
conventional permutation alignment methods. However, this
approach has several drawbacks, such as the need for iterative
computations and for the geometry of the microphone array
to be known. As a way to overcome these drawbacks, we
propose the following three-step approach: We first mask, for
each separated signal, the frequency bands where the compo-
nents from other sources are likely to be dominant, and then
restore the components in those bands so that the restored
spectrogram becomes closer to the original spectrogram of
the corresponding source. The Hungarian algorithm is then
used to perform permutation realignment in those bands in ac-
cordance with the restored spectrogram. The details of these
three steps are as follows.
Step 1: Mask randomly selected or predetermined frequency
bands of the power spectrograms V j = {vj(f, n)}f,n using
a binary mask M l ∈ {0, 1}F×N , where each element of M l

takes the value of 0 at the frequency bins f ∈ Gl and 1 at the
remaining frequency bins f ′ /∈ Gl. Here, Gl, l = 1, . . . , L
denotes a set of frequency bins to be masked.
Step 2: Apply spectrogram inpainting R(·) for each j and l,
Ṽ j,l = R(V j �M l), and utilize the restored spectrograms
Ṽ 1,l, . . . , Ṽ J,l as references. Here, R(·) is a function that
takes as input a spectrogram with some regions missing, and
outputs a spectrogram in which the missing regions are filled.
This function can be built by using the source model for BSS
or a method proposed specifically for audio inpainting (such
as [19, 20]). If the restoration capability of R(·) is sufficient,
the restored spectrogram Ṽ j,l is expected to be closer to the
spectrogram that the source signal should be than the esti-
mated spectrogram V j is, which may have permutation mis-
match in the masked frequency bins.
Step 3: For each frequency block Fk ∩ Gl 6= ∅, compute the
dissimilarity between the variations of the j′th separated sig-
nal and jth reference signal over time as the cost c(l,k)jj′ . This
dissimilarity can be measured, for instance, by the Itakura-
Saito (IS) divergence:

c
(l,k)
jj′ =

∑
f∈Fk∩Gl

∑
n

(
yj′(f, n)

ṽj,l(f, n)
− log

yj′(f, n)

ṽj,l(f, n)
− 1

)
.

(12)

Here, yj′(f, n) = |wH
j′(f)x(f, n)|2 denotes the power spec-

trogram of the j′th separated signal, and ṽj,l(f, n) denotes
the fnth element in the restored spectrogram Ṽ j,l. Note that
since the frequency blocks with permutation mismatch are un-
known in the separation, Fk and Gl are two parameters that

Algorithm 1 HBP method
Require: Frequency blocks for masking {Gl}l, frequency

blocks to perform permutation alignment {Fk}k, a
compensator R(·), power spectrograms of source
model V , power spectrogram vector V(f, n) =
[v1(f, n), . . . , vJ(f, n)]

T, demixing matrices W , ob-
served signals X

1: for j = 1, . . . , J do
2: compute separated signals Y j = {wH

j (f)x(f, n)}f,n
3: end for
4: for l = 1, . . . , L do
5: for j = 1, . . . , J do
6: Ṽ j,l ← R(V j �M l)
7: end for
8: for k = 1, . . . ,K do
9: if Fk ∩ Gl 6= ∅ then

10: compute pairwise cost matrix C(l,k) using (12)
11: obtain Pk by solving the assignment problem de-

fined with C(l,k)

12: W(f)← PT
kW(f) (f ∈ Fk ∩ Gl)

13: V(f, n)← PT
kV(f, n) (f ∈ Fk ∩ Gl)

14: end if
15: end for
16: end for

Table 1. SDRi, SIRi, and SAR [dB] obtained by HBP with
various m. Best scores are highlighted by bold font.

criteria number of frequency bins in a block m
1 2 3 5 8 10 15 20

SDRi 20.00 20.46 20.37 20.67 20.70 20.76 19.55 20.76
SIRi 23.32 23.73 23.56 23.77 23.76 23.72 23.32 23.74
SAR 17.19 17.89 17.87 18.37 18.52 18.77 17.19 18.95

need to be determined in advance.

3.3. HBP for FastMVAE2
In this subsection, we introduce an example of applying the
proposed HBP method to the FastMVAE2 method, which
employs a variant of conditional variational auto-encoders
(CVAEs) called ChimeraACVAE as a source model [22]. To
integrate R(·) into the ChimeraACVAE without increasing
the model size, the network is designed to have the same
architecture as the original one and trained with the criterion

L(φ, θ, ψ) + λJJ (θ, φ) + λJ ′J ′(φ, θ, ψ), (13)

where L is the training criterion of the original ChimeraAC-
VAE, and J and J ′ are measurements of the reconstruction
accuracy defined as

J (θ, φ) = E(S′,S,c)∼pD(S′,S,c)[
Ez∼q+φ (z|S′)[log p

+
θ (S|z, c)]

]
, (14)

J ′(φ, θ, ψ) = E(S′,S)∼pD(S′,S)[
Ez∼q+φ (z|S′),c∼r+ψ (c|S′)[log p

+
θ (S|z, c)].(15)

Here, (S,S′) denotes a pair of spectrograms of clean source
signals and its masked version, and c denotes the conditioning
label, which is the speaker identity in multispeaker separa-
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Table 2. SDRi [dB] and PESQ of each case achieved by FastMVAE2 w/o HPB and FastMVAE2 w/ HBP usingm = 10. Results
for “w/o rep” and “w/ rep” are shown on either side of the slashes, respectively. Best scores are highlighted in bold font.

criteria method # of sources and channels
2 3 6 9 12 15 18

SDR unproc 0.09/0.03 -3.92/-3.95 -8.13/-8.51 -10.45/-10.36 -12.15/-11.93 -13.03/-13.24 -13.86/-14.18

SDRi w/o HBP 27.42/22.86 25.29/24.35 11.62/17.67 14.08/19.03 13.77/16.80 13.03/17.89 12.33/16.34
w/ HBP 29.68/28.27 24.88/32.71 13.86/22.67 17.20/22.44 14.38/20.82 13.44/21.14 12.53/17.62

PESQ w/o HBP 3.76/3.49 3.32/3.32 2.30/2.64 2.31/2.65 2.18/2.38 2.15/2.43 2.03/2.39
w/ HBP 3.75/3.67 3.37/3.80 2.37/2.96 2.53/2.85 2.15/2.65 2.15/2.57 2.04/2.43

tion tasks. q+φ and r+ψ denote two branches of a multitask en-
coder, which encode the input spectrogram into non-speaker
information z and speaker identity c, respectively. p+θ is a de-
coder that reconstructs the spectrogram with inputs of z and c.
φ, θ, ψ are trainable parameters of these networks. In the sep-
aration phase, the ChimeraACVAE trained with (13) is used
to perform spectrogram inpainting on the power spectrogram
V j . Then, the HBP method is applied between the parame-
ter update of the source model and demixing matrix, whose
algorithm is summarized in Algorithm 1.

4. EXPERIMENTAL EVALUATION

4.1. Datasets and experimental conditions

To evaluate the effectiveness of the proposed method, we
conducted speaker-independent multispeaker separation ex-
periments using the Wall Street Journal (WSJ0) corpus
[25]. We used speech utterances of 101 speakers in folder
si tr s (around 25 hours) and those of 18 speakers in fold-
ers si dt 05 and si et 05 for training and testing, respec-
tively. We generated mixture signals of {2, 3, 6, 9, 12, 15, 18}
speakers as the test data using room impulse responses (RIRs)
simulated by the image method [26] with the reflection coef-
ficient of the walls set at 0.20 2. Since the proposed method
utilizes the similarity of time series components as the clue
for permutation alignment, we repeated utterances having a
short length to make the length of sources consistent. We also
generated mixture signals without repeating them to confirm
the influence of long silence periods. We refer to these two
test datasets as “w/ rep” and “w/o rep”. 10 samples for each
case were generated. All the speech signals were sampled
at 16 kHz. The STFT was calculated by using a Hamming
window of 128-ms length and half overlap.

We ran each algorithm for 60 iterations and initialized
the demixing matrix W(f) with an identity matrix. We set
L = 1 and G1 = {F0, . . . , F}, where F0 was set at 2kHz.
This amounts to extending the bandwidth from 2-kHz signals.
Therefore, the element number of G1 was 768. We used m to
denote the number of frequency bins in a frequency block Fk.
The total number of blocks was K = 768/m, and the fre-
quency bins included in the kth block was Fk = {F0 + (k −
1)m, . . . , F0 + km}. We calculated the source-to-distortions
ratio improvement (SDRi), source-to-interferences ratio im-
provement (SIRi), and sources-to-artifacts ratio (SAR) [27]
to evaluate the source separation performance and percep-
tual evaluation of speech quality (PESQ)3 [28] to ascertain

2Details of the room configuration and microphone array are available
in [22].

3Code: https://github.com/vBaiCai/python-pesq

Table 3. Average iteration time [s] measured in an Intel(R)
Xeon(R) Gold 6130 CPU, where m = 10. “HBP iter.” indi-
cates time average of iterations to which HBP was applied.
“w/o HBP” and “w/ HBP” indicate time average of all itera-
tions for each method.

Method # of sources and channels
2 3 6 9 12 15 18

HBP iter. 1.36 2.47 5.57 9.07 13.68 19.60 27.56
w/o HBP 0.08 0.16 0.67 1.53 2.69 5.58 8.80
w/ HBP 0.20 0.38 1.04 2.13 4.14 7.07 11.30

the speech quality.

4.2. Results
First, we investigated the effect of the number of frequency
bins in a single block, m. Table 1 shows the results. Except
for m = 15, which achieved relatively low scores in terms of
all the criteria, these scores indicate that m ≥ 5 improved the
separation performance due to the increase in SAR, but there
was no significant difference in SIRi. We compared the SDRi
and PESQ achieved by FastMVAE2 with and without apply-
ing the proposed method, whose results are shown in Table
2. We found that the HBP method improved both SDRi and
PESQ in most cases, which confirmed the effectiveness of the
proposed method. Comparing the average improvement in
SDRi obtained from the two datasets, which were about 1.06
and 4.39 dB, we found that the long silence period might af-
fect the performance of the proposed method. One direction
of our future work is to reduce the adverse effects of the si-
lence period. Computational times averaged over iterations
are shown in Table 3. These results indicate that the Hungar-
ian algorithm can efficiently solve the assignment problem
even in the case of 18 speakers.

5. CONCLUSIONS

This paper proposed the HBP method, an efficient block per-
mutation solver for frequency-domain BSS. The main idea
is to view the permutation alignment problem as a kind of
assignment problem and solve it using the Hungarian algo-
rithm: Each element of the pairwise cost matrix is given as
the dissimilarity between the temporal variations of separated
and reference signals, where each reference signal is obtained
via spectrogram inpainting after masking the frequency bands
that are likely to be dominated by another source. Multi-
speaker separation experiments revealed that the HBP method
was able to improve separation performance by successfully
correcting block permutation errors.
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