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ABSTRACT
This paper proposes a domain adaptation method for speech
enhancement called Remixed2Remixed. The proposed method
adopts Noise2Noise (N2N) learning to adapt models trained
on artificially generated (out-of-domain: OOD) noisy-clean
pairs of data to better separate real-world recorded (in-
domain) noisy data. The proposed method employs a teacher
model trained on OOD data to acquire pseudo-in-domain
speech and noise signals, which are shuffled and remixed
twice in each batch to generate two bootstrapped mixtures.
The student model is then trained by optimizing an N2N-
based cost function computed using these two bootstrapped
mixtures. As the training strategy is similar to that of the
recently proposed RemixIT, we also investigate the effective-
ness of the N2N-based loss as a regularization of RemixIT.
Experimental results on the CHiME-7 unsupervised domain
adaptation for conversational speech enhancement (UDASE)
task revealed that the proposed method outperformed the
challenging baseline system, RemixIT, and reduced the per-
formance blurring caused by the teacher models.

Index Terms— Speech enhancement, self-supervised
learning, domain adaption, Noise2Noise learning, RemixIT

1. INTRODUCTION

Speech enhancement (SE) [1] is one of the fundamental prob-
lems in speech signal processing and has many applications,
either as a hearing aid or as a frontend system for many other
tasks. It aims to improve the speech quality recorded in the
presence of noise, interference, and reverberation, which has
been greatly improved by deep neural networks (DNNs).

Supervised learning is the most studied approach to SE
[2], wherein the model is trained on noisy-clean paired data
to predict clean signals either directly [3, 4] or via masking
[5–7]. Since recording such parallel pair data is impossible
owing to crosstalk [8], generally, artificially synthesized noisy
data are used to train SE models. However, due to the distribu-
tion mismatch primarily caused by the different acoustic con-
ditions between synthetic (out-of-domain: OOD) and real-
world recorded (in-domain) data, trained models are prone
to performance degradation in case of recorded data. Several
methods have recently been proposed to address this issue, in-
cluding unsupervised methods aimed at learning models us-
ing nonparallel data. For example, machine learning methods
that learn from positive and unlabeled data [8], replacement
of the ground truth of clean speech with evaluation metric
scores [9,10], and use of observation consistency [11,12] have
been proposed.

Another effective solution involves performing domain
adaptation, which adjusts an SE model pre-trained on OOD
data to formulate an accurate noisy-clean mapping that

matches in-domain data. The existing methods include adap-
tive mechanisms such as adversarial learning, optimal trans-
port [13, 14], and self-supervised learning. RemixIT [15] is
a method that employs self-distillation and comprises two
networks. A teacher model pre-trained with synthesized
OOD pair data1 is used to produce pseudo-paired data of
noisy speech and target signals for student training by remix-
ing the separated speech and noise signals in each batch.
Subsequently, a student model is trained using the gener-
ated pseudo-paired data by minimizing the loss between the
predicted signals and pseudo-targets. The teacher model is
continually updated via a weighted moving average (WMA)
using the weights of the student model. Although RemixIT
loss has been theoretically shown to ideally approach the
supervised loss when the teacher model accurately predicts
signals or when the student model observes a large number of
pseudo-mixtures containing the same teacher estimates, this
is not feasible with limited training resources. Consequently,
the performance of RemixIT depends to some extent on the
performance of its teacher model.

On the other hand, approaches applying basic statistical
reasoning have been proposed for DNN-based image denois-
ing. Based on the principle that corrupting the training target
of the network with zero-mean noise does not change what the
denoising network learns from the clean signal, Noise2Noise
(N2N) [16] has demonstrated that a denoising model can be
trained on noisy-noisy paired data, which was later extended
to SE [17]. However, the collection of paired data contain-
ing two independent noisy realizations of the same clean sig-
nal is challenging, particularly for audio signals. This has
motivated the proposal of improved methods to further re-
move the demands on the data. The Noisier2Noise (Nr2N)
[18] and recorrupted-to-recorrupted (R2R) [19] methods use
noise sampled from a known prior distribution to generate
noisy pair data for image denoising. Noisy-target training
(NyTT) [20, 21] uses noisy speech with additional noise to
obtain noisy pair data for SE. Further, NyTT has been demon-
strated to reduce noise close to the additional noise used in
training; however, its performance degrades in case of other
noise [22].

Considering the potential of learning models with less
in-domain data than unsupervised learning that learns from
scratch, this paper focuses on the domain adaptation ap-
proach and proposes a method called Remixed2Remixed
(Re2Re), which employs a teacher-student architecture sim-
ilar to RemixIT and N2N learning. Specifically, the teacher
model is used to generate pseudo-noisy pair data by per-
forming the remix procedure twice, and the student model
is trained using an N2N-based cost function. This facilitates

1RemixIT can be trained in a fully unsupervised manner, where the
teacher model is trained solely using noisy speech by MixIT [11].
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the obtaining of both in-domain speech and noise from only
noisy speech. Moreover, through the explicit optimization of
the cost function defined for denoising, the proposed method
is expected to perform more consistently than RemixIT, re-
gardless of the performance of the teacher model.

2. CONVENTIONAL METHOD: REMIXIT

2.1. Supervised learning

The speech and noise signals drawn from the corresponding
distributions are denoted by s ∼ Ds and n ∼ Dn, respec-
tively. Synthetic noisy speech is obtained as x = s + n.
With paired data (x, s,n), a model predicting both speech
and noise ŝ, n̂ = F(x; θ) parameterized by θ is trained un-
der full supervision by optimizing the following cost function
(i.e., minimizing the reconstruction error of both signals):

Lsupervised = E(x,s,n)

[
L(ŝ, s) + L(n̂,n)

]
. (1)

2.2. RemixIT

RemixIT [15] comprises a teacher model FT and student
model FS . Both models are initialized with a supervised
pre-trained model using synthetic OOD pair data (x, s,n)
and further trained to enhance the real-world recorded data
x′ ∼ Dx′ with only in-domain data accessible. Given a
mini-batch of in-domain noisy data x′ = s′ + n′ ∈ RB×T ,
the teacher model estimates the speech and noise signals as
follows:

s̃′, ñ′ = FT (x
′; θ

(k)
T ), (2)

where the bold Roman font represents a batch a = [a1, . . . ,aB ]
T

including multiple signals ab drawn from distribution Da and
θ
(k)
T denotes the parameters of teacher model at the k-th train-

ing epoch. Here, T denotes the transpose operator and B and
T denote the mini-batch size and signal length, respectively.
The estimated signals are then shuffled and remixed to gener-
ate a bootstrapped mixture x̃′, expressed as

x̃′ = s̃′ +Pñ′. (3)

Here, P ∼ ΠB×B is a permutation matrix. The bootstrapped
mixture is then used to generate the in-domain pseudo-paired
data (x̃′, s̃′, ñ′). The student model FS with parameter θ(k)S
is then trained by minimizing the reconstructed error between
the outputs of the model and the pseudo-targets s̃′ and ñ′ as
follows:

ŝ′, n̂′ = FS(x̃
′; θ

(k)
S ), (4)

LRemixIT =

B∑
b=1

[
L(ŝ′b, s̃′b) + L(n̂′

b, [Pñ′]b)
]
. (5)

To generate more accurate pseudo-targets, the teacher model
is continuously updated using the weighted moving average
(WMA) with the weights of the student model at constant
epoch, which is expressed as θ(k+1)

T = γθ
(k)
S + (1 − γ)θ

(k)
T ,

where 0 ≤ γ ≤ 1 is the weight parameter.
Notably, the cost function of RemixIT LRemixIT exhibits

convergence properties when the Euclidean norm-based met-

ric is used to measure the reconstruction error:

LRemixIT ∝ E
[
||ŝ′ − s̃′||22

]
= E

[
||(ŝ′ − s′)− (s̃′ − s′)||22

]
=E

[
||(ŝ′ − s′)||22

]
+ E

[
||(s̃′ − s′)||22

]
− 2E

[
(s̃′ − s′)T(ŝ′ − s′)

]
≈E

[
||ϵ′S ||22

]
︸ ︷︷ ︸

supervised loss

−E
[
||ϵ′T ||22

]
︸ ︷︷ ︸

constant w.r.t θS

−2E
[
(s̃′ − s′)T︸ ︷︷ ︸

teacher error

1

M

M∑
m=1

(ŝ′m − s̃′)︸ ︷︷ ︸
empirical mean student error

w.r.t student model input

]
,

(6)

where ϵ′S and ϵ′T are the reconstruction errors between the tar-
get signal s′ and the outputs of the student and teacher mod-
els, respectively, and || · ||22 denotes the squared L2 norm.
(6) shows that when the third term is zero, the RemixIT loss
approaches the supervised loss. This could be achieved by
reducing either the teacher error to zero with an accurately
estimated signal in the teacher model or the empirical mean
student error to zero by exposing the student to various boot-
strapped mixtures x̃′

m = s̃′ + ñ′
m, m = 1, . . . ,M involving

the same teacher estimate s̃′ such that Em[ŝ′m|x̃′
m] would ap-

proach s̃′ when M → ∞. This property is important for en-
suring that RemixIT can learn models as supervised learning.
However, reducing the third term to zero with limited training
resources, for example, with M = 1 is not feasible. Thus,
the performance of RemixIT inevitably depends, to a certain
extent, on the performance of its teacher model. Furthermore,
a gap may remain with supervised learning.

3. PROPOSED METHOD: REMIXED2REMIXED

N2N [16] is an image denoising method utilizing basic statis-
tical reasoning. It has demonstrated the feasibility of training
a denoising model using noisy pair (x, x̄) instead of (x, s)
provided the noisy signal x̄ = s + n̄ satisfies E[x̄|x] = s.
Here, E[x̄|x] represents the expected value of noisy signals
when another noisy realization of clean signal is provided.
This can be achieved when E[n̄] = 0 and n̄ and n are in-
dependent of each other; that is, x and x̄ are two indepen-
dent noisy realizations of s. Inspired by the success of N2N,
we extend it to SE with a motivation similar to that of [17].
In contrast to [17], where the paired data of two noisy re-
alizations are obtained synthetically, we utilize the teacher-
student architecture in RemixIT to generate paired noisy data
by remixing in-domain speech and noise signals separated
by a pre-trained OOD model. This renders it easy to obtain
two in-domain noisy realizations that contain the same signals
from only recorded noisy signals.

Fig. 1 presents a flowchart of the proposed method,
Remixed2Remixed (Re2Re). Re2Re has a teacher-student ar-
chitecture similar to RemixIT, with the difference being that
it generates in-domain paired data of two noisy realizations
(x̄′, x̃′) by performing the remixing process twice to generate
two bootstrapped mixtures for every training iteration. In ad-
dition to the bootstrapped mixture x̃′ generated by using (3),
another bootstrapped mixture containing the teacher estimate
s̃′ is expressed as

x̄′ = s̃′ +Qñ′, (7)

where Q is uniformly sampled from a set of B × B permu-
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Fig. 1. Flowchart of proposed Remixed2Remixed.

tation matrices, such that Q ⊥ P. Using noisy pair data
(x̄′, x̃′), the student model is trained by minimizing the N2N-
based loss

LRe2Re = E(x̄′,x̃′)

[
L(FS(x̃

′; θS), x̄
′)
]
= E(x̄′,x̃′)

[
L(ŝ′, x̄′)

]
,

(8)

that satisfies E[x̄′|x̃′] = s′ when sufficient paired data (x̄′, x̃′)
the student model could obtain. To generate sufficient pair
data, we update the teacher model at every epoch such that x̃′

and x̄′ could be considered as two noisy realizations of sig-
nal s′ generated in an on-the-fly manner by corrupting speech
signal s′ with ϵ

(k)
T + Pñ′ and ϵ

(k)
T + Qñ′. ϵ

(k)
T is the es-

timated error of the teacher model in kth epoch. It is gen-
erally assumed that noise signals and estimated errors have
zero means [23, 24]. Therefore, (x̄′, x̃′) satisfies the zero-
mean condition. Although ϵ

(k)
T + Pñ′ and ϵ

(k)
T + Qñ′ are

not exactly independent due to the presence of ϵ(k)T , the im-
pact of ϵ(k)T could be reduced by increasing the power of Pñ′

and Qñ′. We also consider applying the N2N loss as a regu-
larization for RemixIT, referred to as Re2Re reg, whose cost
function is given by

LRe2Re reg = LRemixIT + βLRe2Re, (9)

where β ≥ 0 is a parameter balancing the importance of each
term. By explicitly optimizing the cost defined for denoising
(8) instead of the reconstruction error of (5) between the out-
puts of the teacher and student models, methods using N2N
loss are expected to perform more consistently than RemixIT,
regardless of the performance of the teacher model.

4. EXPERIMENTAL EVALUATION

4.1. Datasets and experimental conditions

To evaluate the performance of the proposed Re2Re for do-
main adaptation, we conducted speech enhancement experi-
ments on the CHiME-7 unsupervised domain adaptation for
conversational speech enhancement (UDASE) task [25, 26],
which comprises three datasets: (1) the LibriMix paired
dataset for training OOD supervised SE model and de-
velopment; (2) the CHiME-5 in-domain unlabeled dataset
for adopting domain adaptation, development, and evalu-
ation; and (3) the reverberant LibriCHiME-5 close-to-in-

Table 1. SI-SDR [dB] in reverberant CHiME-5 dataset and
DNS-MOS in 1-spk subset of CHiME-5 dataset. ∗ denotes
model checkpoints provided by CHiME-7. Other models
were trained from Sudo rm-rf∗ checkpoints. Bold fonts in-
dicate the best scores.

CHiME-5 w/o VAD CHiME-5 w/ VAD
DNS-MOS DNS-MOSMethods SI-SDR

[dB] OVRBAK SIG
SI-SDR

[dB] OVRBAK SIG
Sudo rm-rf∗ 7.80 2.88 3.59 3.33 7.80 2.88 3.59 3.33
RemixIT∗ 9.44 2.83 3.65 3.25 10.05 2.84 3.63 3.27
RemixIT 10.94 2.84 3.63 3.29 10.68 2.85 3.51 3.33
Re2Re reg 11.26 2.82 3.54 3.31 11.64 2.82 3.51 3.32
Re2Re 11.65 2.84 3.42 3.37 11.76 2.80 3.47 3.29

domain paired dataset for development and evaluation. All
the datasets contain three subsets labeled with the maxi-
mum number of speakers: 1-spk, 2-spk, and 3-spk. Lib-
riMix [27]: A noisy speech separation benchmark compris-
ing clean speech and noise signals from LibriSpeech [28]
and WHAM! [29], respectively. Libri2Mix and Libri3Mix,
with two or three overlapping speakers in each mixture, were
used as subsets of 2-spk and 3-spk, respectively, and a sub-
set of 1-spk (Libri1Mix) was obtained by discarding one of
the two speakers in the Libri2Mix mixtures. The propor-
tions of the 1-spk, 2-spk, and 3-spk mixtures were 0.5, 0.25,
and 0.25, respectively. CHiME-5 [30]: A dataset originally
comprising noisy multi-speaker utterances of 20 conversa-
tion sessions recorded at 4-people dinner parties. CHiME-7
UDASE excerpted the recording channel where participants
wearing microphones did not speak (i.e., the maximum num-
ber of simultaneously active speakers was three) and divided
the signals into four subsets, including short segments of at
least 3s length labeled by the maximum number of speakers
according to the transcript. A subset containing noise-only
segments was used to create the reverberant LibriCHiME-5
dataset for objective evaluation. Other subsets were further
divided for train (≈83h), development (≈15.5h), and eval-
uation (≈7h), respectively. Segments for training were cut
into chunks of up to 10s, and a voice activity detector (VAD)
was applied for post-processing to obtain two versions of
the training dataset: CHiME-5 w/o VAD and CHiME-5 w/
VAD. Reverberant LibriCHiME-5: A synthetic dataset
that comprised reverberant noisy speech labeled with clean
speech, where clean speech and noise signals were excerpted
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Table 2. Average SI-SDRs and standard deviations [dB] over ten trials in reverberant LibriCHiME-5 dataset. All models were
initialized by the same teacher models. Bold fonts indicate the best scores, and underlines indicate standard deviations smaller
or equivalent to those achieved by RemixIT.

CHiME-5 w/o VAD CHiME-5 w/ VADMethods 1-spk 2-spk 3-spk Avg. 1-spk 2-spk 3-spk Avg.
Sudo rm-rf 8.68 ± 0.63 8.76 ± 1.02 7.50 ± 1.55 8.67 ± 0.75 8.36 ± 0.86 8.46 ± 1.15 7.84 ± 1.43 8.37 ± 0.95
RemixIT 10.95 ± 0.94 10.76 ± 1.51 9.91 ± 2.13 10.87 ± 1.10 11.21 ± 0.56 11.25 ± 0.81 10.76 ± 1.05 11.20 ± 0.59
Re2Re reg 11.34 ± 0.48 11.20 ± 0.92 10.53 ± 1.32 11.28 ± 0.57 11.35 ± 0.46 11.42 ± 0.61 10.84 ± 0.66 11.35 ± 0.48
Re2Re 11.24 ± 0.39 11.75 ± 0.77 11.53 ± 1.19 11.38 ± 0.45 11.44 ± 0.49 11.83 ± 0.73 11.61 ± 0.82 11.55 ± 0.53

from LibriSpeech [28] and the above-mentioned noise-only
subset, respectively. Room impulse responses (RIRs) ex-
cerpted from the VoiceHome corpus were recorded in the
living room, kitchen, and bedroom of three real homes with
18 different microphone arrays and loudspeaker settings. The
mixtures were generated via the addition of noise segments
to randomly sampled speech utterances convolved with ran-
domly sampled RIRs, where the signal-to-noise ratio (SNR)
for each speaker was distributed as a Gaussian distribution
with a mean of 5 dB and a standard deviation (std) of 7 dB
to match the CHiME-5 dataset. The proportions of the 1-spk,
2-spk, and 3-spk subsets were 0.6, 0.35, and 0.05, respec-
tively. The data durations for development and evaluation
were approximately 3h each.

To demonstrate the effectiveness of the cost function, we
used the recipe provided by CHiME-7 without modifications
except for the cost function. We used the Sudo rm-rf [6]
architecture for both the teacher and student models, whose
encoder and decoder comprised one-dimensional convolution
and transpose convolution, respectively, with 512 filters of
41 taps and a hop size of 20 samples; the separator com-
prised 8 U-Conv blocks. The pre-trained teacher model ini-
tialized the student model and was continually updated by
WMA with a weight of γ = 0.01 every epoch. The batch
size was 24. The negative scale-invariant signal-to-distortion
ratio (SI-SDR) [31] was used as the cost function for training
the teacher and student models in RemixIT. We used the mean
squared error between the estimated speech signal and boot-
strapped mixture as LRe2Re. For Re2Re reg, we set β = 100
according to the development set. We calculated the DNS-
MOS [32] scores on the 1-spk subset of the CHiME-5 dataset
and SI-SDR [dB] on the reverberant LibriCHiME-5 dataset.
Further details regarding the datasets and the baseline system
can be found in [25, 26].

4.2. Experimental results

First, the proposed Re2Re and Re2Re reg were compared
with the CHiME-7 baseline system. Table 1 lists the SI-SDRs
[dB] on the reverberant LibriCHiME-5 dataset and the DNS-
MOS scores in the 1-spk subset of the CHiME-5 dataset. All
models were trained using the Sudo rm-rf checkpoint pro-
vided by CHiME-7. The two proposed methods outperformed
the baseline method in terms of SI-SDR, regardless of the
application of VAD to the training data. Re2Re, using only
the N2N loss, achieved SI-SDR that was approximately 0.71
dB and 1.08 dB higher than that achieved by using RemixIT.
However, no improvement was observed for the DNS-MOS.
This may be attributed to Re2Re only considering the recon-
struction error of the speech signal, resulting in a less accurate
estimation of background noise. Table 2 summarizes the SI-

Table 3. SI-SDR [dB] in reverberant CHiME-5 dataset and
DNS-MOS in 1-spk subset of CHiME-5 dataset achieved by
our best systems and systems submitted to CHiME-7 chal-
lenge, ranked based on SI-SDR scores. Scores of other sys-
tems are obtained from [26]. The presence of “VAD” indi-
cates the version of the CHiME-5 dataset used for training.

DNS-MOSSystems SI-SDR
[dB] OVRL BAK SIG

NWPU and ByteAudio 13.0 3.07 3.93 3.39
Sogang ISDS1 12.4 2.90 3.60 3.39
RemixIT-VAD 10.1 2.84 3.62 3.28
Conformer Metric GAN 7.8 3.40 3.97 3.76
Sudo rm-rf 7.8 2.88 3.59 3.33
Input 6.6 2.84 2.92 3.48
Re2Re 12.41 2.85 3.42 3.35
Re2Re-VAD 12.41 2.79 3.39 3.32

SDR[dB] and its std for each subset averaged over 10 teacher
models. The two proposed methods achieved better and rel-
atively stable performances in all cases. The models trained
on data without and with VAD achieved SI-SDR improve-
ments of 0.99 and 1.62 dB on the 2-spk and 0.58 and 0.85
dB on the 3-spk subsets, respectively, whereas the improve-
ments on the 1-spk subset were limited to 0.29 and 0.23 dB.
This could be another reason for the lack of improvement in
the DNS-MOS. The standard deviations were approximately
halved when trained on data without VAD and slightly re-
duced when trained on data with VAD, indicating that the per-
formance of the student model relative to the teacher could
be stabilized by N2N loss, even as a regularization. Subse-
quently, we compared our best systems to those submitted to
the challenge, whose results are summarized in Table 3. The
proposed methods achieved performance comparable to that
of the system ranked second in the challenge regarding SI-
SDR and the baseline RemixIT regarding DNS-MOS.

5. CONCLUSIONS

The paper proposed applying N2N learning to SE domain
adaptation. The proposed method, called Remixed2Remixed,
used a teacher-student architecture, wherein a teacher model
was pre-trained with OOD data and then used to generate
pseudo-noisy pair data, and a student model was trained by
minimizing an N2N-based loss function. Experimental re-
sults on the CHiME-7 UDASE task revealed that Re2Re out-
performed RemixIT w.r.t SI-SDR with a more stable perfor-
mance.
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