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ABSTRACT

Non-negative matrix factorization (NMF) is effective in terms
of signal recovery accuracy for single-channel speech en-
hancement task, while it does not directly lead to an enhance-
ment in feature domain. To overcome this problem, we have
previously proposed an extension of NMF which combines
a NMF-model fitting ceriterion and a divergence measuring
the NMF model of speech and the mel-generalized cepstral
(MGC) representation of a pretrained propotype spectrum.
The model has been shown effective both in increasing the
signal recovery accuracy and feature domain enhancement.
However one drawback is that the regularization term is for-
mulated based on the NMF model of speech which may
cause a degradation of the effect of regularization term since
the enhanced speech is obtained using Wiener filtering. This
paper proposes a novel formulation for MGC regularization
and combines it with Discriminative NMF (DNMF) in or-
der to achieve better speech enhancement performance. The
experimental results revealed that the proposed method out-
performed the perviously proposed model in terms of both
the signal recovery accuracy and feature enhancement.

Index Terms— Discriminative non-negative matrix fac-
torization, mel-generalized cepstral representation, speech
enhancement, single-channel

1. INTRODUCTION

Speech enhancement is a technique for recovering the speech
signal from an obseved noisy speech signal. Since the pres-
ence of noise can significantly degrade the qulity of speech
transmission systems and the performance of applications
such as speech recognition and speech conversion, many
efforts have been devoted to increasing the performance of
speech enhancement over recent decades.

For monaural speech enhancement task, non-negative
matrix factorization (NMF) [1, 2] is a powerful approach
attracted a lot of attention since it has been proposed. Al-
thought in the recent years, deep neural networks based
machine learning approaches have showed the incredible
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capability for various supervised audio signal process tasks
including monaural speech enhancement [3, 4], NMF still re-
mains attractive under unsupervised setting or only a limited
training data set available.

Given an observed magnitude or power spectrogram of
a mixture signal, NMF aims to approximate it as the sum
of speech and noise spectrogram models, which are repre-
sented as a non-negative linear sum of the pretrained basis
spectra scaled by time-varying amplitudes. The underlying
speech components can be separated out using the Wiener
filter constructed by the estimated power spectrograms of
speech and noise. Although NMF is shown to be effective in
terms of signal recovery accuracy, one drawback is that NMF
does not directly lead to an enhancement in the feature do-
main (e.g., cepstral domain) or in terms of perceived quality.
To overcome this drawback, we have previously proposed
a NMF framework using mel-generalized cepstral regular-
ization (MGCRNMF) [5], which combines an NMF-based
model fitting criterion with a divergence measure between
the estimated NMF model of speech and the mel-generalized
cepstral (MGC) representation [6] of a prototype spectrum in
a pretrained codebook. In [5], we have shown the effective-
ness of the MGC regularization in terms of increasing both
signal recovery accuracy and cepstral domain enhancement.
However, MGCRNMF considers the regularization based on
NMF model while the enhanced speech is finally separated
out by Wiener filtering, which may lead to a reduction in the
effect of the regularization term. To address this problem,
this paper proposes a novel formulation of mel-generalized
cepstral regularization which measures a divergence between
a prototype spectrum represented by MGC representation and
the estimated enhanced speech spectra obtained by Wiener
filter directly.

On the other hand, Weninger recently proposed a basis
training approach called discriminative NMF (DNMF) [7],
which trains the basis spectra in such a way that the output
of the Wiener filter becomes as close to the spectrogram of
each of the training examples as possible so that the separated
signals become optimal at test time. Since the basis spectra
trained by DNMF also takes the Wiener filter into account, it
makes us to believe that the basis spectra trained by DNMF
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are more appropriate for the proposed formulation than those
trained by conventional NMF way. Furthermore, DNMF has
been proved it can provide greater separation capability than
conventional NMF [7, 8], which further motivates us to con-
nect DNMF with mel-generatlized cepstral regularization in
order to achieve better performance of speech enhancement.

The remaining part of the paper proceeds as follows:
we review the model of NMF with MGC regularization for
speech enhancement task in sec. 2. In sec. 3, we introduce the
new formulation for MGC regularization and derive the up-
date rules of paremeters based on majorization-minimization
(MM) principle. In the experimental section (sec. 4), we de-
fine the data set, investigate the hyperparameters of the model
and compare the proposed method with established methods.
We conclude this work in sec. 5.

2. NMF WITH MEL-GENERALIZED CEPSTRAL
REGULARIZATION

2.1. NMF for speech enhancement

Given an observed power spectrogram of a noisy speech sig-
nal Y = (Yω,t)Ω×T ∈ R≥0,Ω×T , where ω and t are fre-
quency and time indices, we consider approximating it by the
sum of speech and noise components, Xω,t = Xs

ω,t + Xn
ω,t,

where Xs
ω,t and Xn

ω,t are represented by the non-negative lin-
ear combination of Ks speech basis spectra W s

1,ω, . . . ,W
s
Ks,ω

and Kn noise basis spectra Wn
1,ω, . . . ,W

n
Kn,ω

:

Xs
ω,t =

Ks∑
k=1

W s
k,ωH

s
k,t, Xn

ω,t =

Kn∑
k=1

Wn
k,ωH

n
k,t. (1)

In a supervised setting, a concentrated basis matrix W =
[W s W n] are pretrained using speech and noise training
samples respectively. H = [Hs;Hn] are the variables to be
estimated at test time. NMF leads to different optimization
problems according to the definition of the measure of the
difference between Y and X = (Xω,t)Ω×T . Here we use the
generalized Kullback Leibler (KL) divergence

DKL(Y |X) =
∑
ω,t

(
Yω,t log

Yω,t

Xω,t
− Yω,t +Xω,t

)
(2)

as a goodness-of-fit criterion. Once Xs
ω,t and Xn

ω,t are esti-
mated, the enhanced speech can be separated out using the
Wiener filter constructed with the estimated power spectro-
gram of speech and noise

X̂s =
W sHs

WH
⊗ Y , (3)

where ·
· and ⊗ here are element-wise operations.

2.2. Mel-generalized cepstral regularization

When estimating the speech spectrogram Xs
ω,t in a mixture

spectrogram Yω,t, we would want to ensure that the features

of Xs
ω,t in cepstral domain are also enhanced. With this moti-

vation, we have proposed a penalty term in [5] defined as the
Itakura-Saito (IS) divergence [9] between Xs

ω,t and Sω,t(θ)

J (Hs,θ) =
∑
ω,t

( Xs
ω,t

Sω,t(θ)
− log

Xs
ω,t

Sω,t(θ)
− 1

)
. (4)

Here Sω,t(θ) = βt,rtµω,rt is a scaled pretrained propotype
spectrum chosen from I propotypes, which are trained us-
ing clean speech samples by k-means. At each iteration, we
find the prototype spectrum µi closest to Xs

t in terms of the
IS divergence. rt ∈ {1, . . . , I} denotes a cluster indicator
variable, describing to which of the I clusters the t-th speech
spectrum is assigned. To eliminate the scaling indeterminacy,
we invoke a scaling parameter βt,rt , which can be obtained as

β̂t,i =
1

Ω

∑
ω

Xs
ω,t

µω,i
. (5)

when Xs
ω,t and µω,i are given. Thus, the parameter θ =

{rt, βt,rt} consists of a set of cluster indicator variables and
corresponding scaling parameters. Note the propotype spec-
tra µi = [µ1,i, . . . , µΩ,i]

T here are represented by MGC
representation, which is a parametric model for spectral en-
velopes of speech described by M + 1 coefficients and two
hyperparameters γ and α:

µω = l−1
γ

( M∑
m=0

c(m)Ψm
α (ejω)

)
(6)

=


(
1 + γ

M∑
m=0

c(m)Ψm
α (ejω)

)1/γ

(0 < |γ| ≤ 1)

exp
M∑

m=0
c(m)Ψm

α (ejω) (γ = 0)

.

The coefficients c = [c(0), . . . , c(M)]T are called the MGC
coefficients (MGCC). The function l−1

γ (· ) is the inverse of
the generalized logarithmic function

lγ(ω) =

{
(ωγ − 1)/γ (0 < |γ| ≤ 1)

logω (γ = 0)
, (7)

parameterized by γ. Ψα(z) is an all-pass function given by

Ψα(z) =
z−1 − α

1− αz−1
, (8)

which can be seen as a frequency warping function parameter-
ized by α. Here, α must satisfy |α| < 1. Note that MGC rep-
resentation takes the all-pole spectral model and the cepstral
representation as special cases when (γ, α) = (−1, 0) and
(γ, α) = (0, 0) respectively. When the sampling frequency is
16 kHz, the phase characteristic of the all-pass function be-
comes a good approximation to the mel scale with α = 0.42
and to the bark scale with α = 0.55 [10].



2.3. Objective function of MGCRNMF

MGCRNMF considers an optimization problem of minimiz-
ing a combined objective function of (2) and (4)

F(H,θ) = DKL(Y |X) + λJ (Hs,θ), (9)

where λ ≥ 0 weighs the importance of the mel-generalized
cepstral regularization term relative to the NMF cost.

However, since the enhanced speech finally separated out
using a Wiener filter, the formulation of MGC regularization
based on NMF model of speech W sHs may cause a reduc-
tion of the effect of the regularization term during the filtering
process.

3. PROPOSED METHOD

3.1. A new formulation of MGC regularization

To address the problem mentioned above, we introduce a new
formulation of MGC regularization which measures IS diver-
gence between the pretrained propotypes and the enhanced
speech spectra obtained using a Wiener filter directly.

J̃ (Hs,θ) =
∑
ω,t

( X̂s
ω,t

Sω,t(θ)
− log

X̂s
ω,t

Sω,t(θ)
− 1

)
, (10)

where, X̂s
ω,t are the enhanced speech spectra obtained by

Wiener filtering (3). With the new regularization term, we can
easily obtain the objective function of the proposed method

F̃(H,θ) = DKL(Y |X) + λJ̃ (Hs,θ). (11)

Similarily, λ ≥ 0 here is a weight parameter to measure the
importance of the regularization term relative to the NMF
cost.

3.2. Relation to DNMF

Instead of applying NMF to speech and noise training sam-
ples respectively to train the basis spectra, Weninger [7] pro-
posed directly using the reconstruction error of the separated
signals as an objective function for the basis training

minimize f(W ,H) = DKL

(
T

∣∣∣∣W sHs

WH
⊗ Y

)
(12)

subject to ∀k,
∑
ω

Wω,k = 1,

where T denotes the spectrograms of clean speech train-
ing samples. This framework is called discriminative NMF
(DNMF) by analogy with the discriminative models for clas-
sification or regression. DNMF trains basis spectra which are
optimal to construct a Wiener filter instead of basis spectra
which represents spectrograms of clean train samples well,
which is more appropriate for the proposed formulation of
MGC regularization.

3.3. Update rules and algorithm

Although minimizing the objective function including the
regularization term (10) directly is analytically difficult, we
can derive a computationally efficient algorithm to find a
locally optimal solution based on majorization-minimization
(MM) principle [11, 12].

Suppose F (Θ) is an objective function that we wish to
minimize with respect to Θ. Majorization-minimization prin-
ciple considers to construct a “majorizer” F+(Θ, α) defined
as a function satisfying F (Θ) = minα F+(Θ, α), where α is
called an auxiliary parameter. An algorithm that consists of
iteratively minimizing F+(Θ, α) with respect to Θ and α is
guaranteed to converge to a stationary point of the objective
function. It should be noted that this concept is adopted in
many existing algorithms [1, 13].

Here, we derive a majorizer for the objective function (11)
with respect to Hs and Hn when target MGC representa-
tion Sω,t(θ̂) with θ fixed to θ̂. First, DKL(Y |X) involves
a “log-of-sum” form of Wk,ωHk,t. Since the negative loga-
rithm function is a convex function, we can invoke Jensen’s
inequality to construct an upper bound of DKL(Y |X) having
a “sum-of-logs” form in the same way as [1]

DKL(Y |X) ≤ D+
KL(Y |X) (13)

D+
KL(Y |X)

c
=
∑
ω,t

(
− Yω,t

∑
k

ζk,ω,t log
Wk,ωHk,t

ζk,ω,t
+Xω,t

)
,

where =c denotes equality up to a constant term and ζk,ω,t is
a positive weight that sums to unity,

∑
k ζk,ω,t = 1. It can be

shown that equality of (13) holds if and only if

ζk,ω,t =
Wk,ωHk,t∑K

k′=1 Wk′,ωHk′,t

. (14)

Then, we focus on the regularization term

J̃ (Hs; θ̂)
c
=
∑
ω,t

( Yω,tG
s
ω,t

Sω,t(θ̂)Gω,t

− logGs
ω,t + logGω,t

)
,

(15)

where Gs
ω,t =

∑Ks

k=1 W
s
k,ωH

s
k,t and Gω,t =

∑K
k=1 Wk,ωHk,t.

To construct an upper bound for the first term of (15), we can
invoke the Lemma 1 introduced in [8]

Gs
ω,t

Gω,t
≤

τω,tG
s
ω,t

2

2
+

1

2τω,tG2
ω,t

. (16)

The equality of (16) holds if and only if

τω,t =
1

Gs
ω,tGω,t

. (17)

Since a quadratic function is convex, we can apply Jensen’s
inequality to Gs

ω,t
2, which yields

Gs
ω,t

2 ≤
Ks∑
k=1

W s
ω,k

2Hs
k,t

2

αk,ω,t
, (18)



where αk,ω,t > 0 is also a positive number that sums to unity,
i.e.,

∑
k αk,ω,t = 1. The equality of (18) holds if and only if

αk,ω,t =
W s

k,ωH
s
k,t∑Ks

k′=1 W
s
k′,ωH

s
k′,t

. (19)

We can use the fact that 1/x2 is convex in the first quadrant
and use Jensen’s inequality to obtain a majorizer:

1

G2
ω,t

≤
K∑

k=1

ξ3k,ω,t

W 2
k,ωH

2
k,t

, (20)

where ξk,ω,t > 0 and
∑

k ξk,ω,t = 1. It can be proved that
the equality of this inequality holds if and only if

ξk,ω,t =
Wk,ωHk,t∑K

k′=1 Wk′,ωHk,t′
. (21)

By substituting (18) and (20) into (16), the majorizer for the
first term can be written as

Gs
ω,t

Gω,t
≤

Ks∑
k=1

τω,tW
s
k,ω

2Hs
k,t

2

2αk,ω,t
+

K∑
k=1

ξ3k,ω,t

2τω,tW 2
k,ωH

2
k,t

. (22)

As regards the second term, Jensen’s inequality can be in-
voked again since − logGs

ω,t is convex in Gs
ω,t,

− logGs
ω,t ≤−

Ks∑
k=1

γk,ω,t log
W s

k,ωH
s
k,t

γk,ω,t
, (23)

where γk,ω,t is a positive weight that sums to unity. The
equality of (23) holds if and only if

γk,ω,t =
W s

k,ωH
s
k,t∑Ks

k′=1 W
s
k′,ωH

s
k′,t

. (24)

The third term logGω,t is concave in Gω,t. Hence, we can
use the fact that a tangent line to the graph of a differentiable
concave function lies entirely above the graph:

logGω,t ≤
K∑

k=1

Wk,ωHk,t

ηω,t
+ log ηω,t − 1, (25)

where ηω,t is an arbitrary positive number. The equality of
this inequality holds if and only if

ηω,t = Gω,t. (26)

From (22), (23) and (25), we can construct a majorizer for the
regularization term as

J̃ (Hs; θ̂) ≤ J̃ +(Hs,Γ; θ̂)

=
∑
k,ω,t

τω,tYω,tW
s
k,ω

2Hs
k,t

2

2αk,ω,tSω,t(θ̂)
+

∑
k,ω,t

ξ3k,ω,tYω,t

2τω,tSω,t(θ̂)W 2
k,ωH

2
k,t

−
∑
k,ω,t

γk,ω,t log
W s

k,ωH
s
k,t

γk,ω,t
+

∑
k,ω,t

Wk,ωHk,t

ηω,t
+ d,

where Γ = {ζk,ω,t, τω,t, γk,ω,t, ηω,t, αk,ω,t, ξk,ω,t} denotes
a set of all the auxiliary variables and d denotes a constant
term. The upper bound for the objective function can be easily
obtained by combining the majorizers for each term as

F̃+(H,Γ; θ̂) = D+
KL(Y |X) + λJ̃ +(Hs,Γ; θ̂). (27)

The update rules for Hk,t can be obtained by setting at zeros
the partial derivatives of the derived majorizer with respect to
Hs

k,t and Hn
k,t. Thus, the update rules can be obtained as the

positive solution of the following quartic and cubic equations:

∑
ω

τω,tYω,t

2αk,ω,tSω,t(θ̂)
W s

k,ω
2Hs

k,t
4 +

∑
ω

W s
k,ω

ηω,t
Hs

k,t
3

−
∑
ω

γk,ω,tH
s
k,t

2 −
∑
ω

Yω,tξ
3
k,ω,t

2τω,tSω,t(θ̂)W s
k,ω

2
= 0, (28)

∑
ω

Wn
k,ω

ηω,t
Hn

k,t
3 −

∑
ω

Yω,tξ
3
k,ω,t

2τω,tSω,t(θ̂)Wn
k,ω

2
= 0. (29)

It is noteworthy that all the parameters can be updated in par-
allel using these update rules, which means this algorithm is
well suited to parallel implementations. Furthermore, since
each of the update rules consists of a negative 0th-order term
and a negative 2nd-order term, it turns out that there is only
one positive solution, implying that there is no need to solve
a solution selection problem.

Algorithm. 1 shows the whole procedure.

Algorithm 1 Algorithm presented in subsec. 3.3
Require: pretrained speech basis W and I MGC prototypes

µ, parameters λ and MaxIter
1: random initialize Hs and Hn

2: for iter = 1 to MaxIter do
3: if iter ≤ 50 then
4: update Hs and Hn using SSNMF
5: else
6: calculate the enhanced speech X̂

s
using (3)

7: for Frame t = 1 to T do
8: compute β̂t,i using (5)

9: r̂t = argminrt J̃ (Hs,θ)

10: Sω,t(θ̂) = β̂t,r̂tµω,r̂t

11: end for
12: update auxiliary variables Γ using (14), (17), (19),
13: (21) , (24) and (26)
14: update Hs,Hn by solving the equations (28) and (29)
15: end if
16: end for
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Fig. 1. Percentage of the number of frames which shift the propotype dur-
ing the updating of MGCRNMF (upper) and MGCRDNMF (bottom). The
average number of 10 samples randomly selected under 5 noise types are
shown in the figure.

4. EXPERIMENTS

4.1. Experimental conditions

To evaluate the effect of the proposed method for speech en-
hancement task, we tested supervised NMF (SNMF) [2], Dis-
criminative NMF (DNMF) [8], NMF with mel-generalized
cepstral regularization (MGCRNMF) [5] and the proposed
method (MGCRDNMF) using the speech data excerpted from
the ATR503 database [14] and 5 types of measured noise,
respectively BusTerminal-5dB, Square-5dB, BowlingAlley-
5dB, SubwayStation0dB and DepartmentStore0dB, excerpted
from the ATR ambient noise sound database.

The test data were created by adding noise signals to clean
speech signals with the signal-to-noise ratios (SNRs) of -5,
0 dB. All the audio signals were monaural and sampled at
16KHz. The STFT was computed using the Hanning window
with 32ms long and 16ms overlap.

In the training phase, 200 utterances spoken by 2 male and
2 female speakers were used to train 40 speech basis spec-
tra. For noise we used the same number of basis spectra. We
run 200 iterations for SNMF basis training and 25 iterations
for DNMF training with running 100 iterations NMF for ini-
tialization. The same training set was also used for k-means
training. The cluster number was set at 1000. We used 20 or-
der MGCCs with hyperparameter (γ, α) = (−1, 0.42) since
it has been shown in [5] that this hyperparameters setting can
achieve relatively high performance stably under all condi-
tions.

In the test phase, 50 uttrances selected randomly from
ATR503 database were used as test data set. All methods
were run 200 iterations while MGCRNMF and the proposed
method run 50 iterations NMF as an initialization. During
the update, each frame should converge to one cluster, which
means we do not need to figure out the cloest propotype spec-
trum at every iteration. Fig. 1 shows the percentage of how
many frames shift the cluster to another one among all the
frames at every iteration. The average frame number of the
selected test data was about 324 so that 1% of the whole

Table 1. A comparsion of runtime [sec] between updating indicator vari-
ables at each iteration and updating them at the first iteration of MGCRNMF
and the proposed method. The length of the test data was 5 seconds.

w/ update w/o update
MGCRNMF 135.5534 1.9471

MGCRDNMF 259.9060 126.9996
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Fig. 2. Average SDR improvement [dB] (left) and MFCC improvement
[dB] (right) achieved by MGCRNMF and the proposed method using 50 test
samples with λ from 0.1 to 1.5 at 0.1 intervals. The points draw the maximum
of the curves.

frames was about 3 frames, which means that there was only
about 3 frames have not converged to the clusters after updat-
ing once. With this result, in the following experiments, we
set the update iteration number of the indicator variables {rt}
at 1. Tab. 1 shows a comparsion of the runtime between up-
dating indicator variable every iteration and only updating it
once using MGCRNMF and the proposed method. The pro-
grams were run in the MATLAB 2015b with Inter(R) Xeon
E3-1505M V5 CPU @2.80GHz 64bit and 16.0 GB memory.
The results show a significant improvement in runtime be-
tween w/o update and w/ update with a very small degrada-
tion of the performance about 0.05 dB. It is worth noting that
without updating every iteration, MGCRNMF realized a real
time computation.

We investigated the weight parameter λ during 0.1 to 1.5
at 0.1 intervals and the results are shown in Fig. 2. According
to the Fig. 2, we set λ = 0.4 for MGCRNMF and λ = 0.5 for
the proposed method this time in order to achieve the highest
signal-to-distortion ratio improvement.

4.2. Objective evaluation

We used Signal-to-distortion ratios (SDRs), signal-to-interference
ratios (SIRs) [15] and MFCC distance for the evaluation.
Given two D-dimension MFCC sequences x[d] and y[d] cal-
culated from N frequency bins, the MFCC distance is defined
as follow:

Dist =
20D

N ln 10

√√√√2

D∑
d

(x[d]− y[d])2. (30)

Tab. 2 shows the results of average SDR, SIR and MFCC
distance improvement [dB] obtained using SNMF, DNMF,



Table 2. From top to bottom, there are respectively average SDR, SIR,
MFCC Improvement [dB] evaluated under 5 noise conditions. The highest
score of each term is shown in bold font type.

Noise Type SNMF MGCRNMF DNMF Proposed
BusTerminal 10.71 11.22 11.57 11.94

Square 6.19 6.45 6.76 6.88
BowlingAlley 3.37 3.40 4.01 4.30
SubwayStation 3.90 3.78 4.22 4.46

DepartmentStore 4.73 4.95 4.76 4.97

Noise Type SNMF MGCRNMF DNMF Proposed
BusTerminal 13.85 15.07 17.43 18.32

Square 8.61 9.29 10.32 11.14
BowlingAlley 5.27 5.77 6.72 7.40
SubwayStation 6.74 7.71 8.27 8.87

DepartmentStore 7.09 7.89 8.92 10.42

Noise Type SNMF MGCRNMF DNMF Proposed
BusTerminal 1.79 2.27 3.24 3.66

Square 1.87 2.10 1.84 3.05
BowlingAlley 1.32 1.97 2.81 3.13
SubwayStation 1.81 2.52 2.85 3.51

DepartmentStore 1.79 2.27 2.36 3.22

MGCRNMF and the proposed method under 5 noise condi-
tions. The proposed method outperformed the other methods
under all the conditions in all the evaluation criteria.

5. CONCLUSION

This paper proposed a novel formulation for mel-generalized
cepstral regularization to enhance speech in spectral and
cepstral domain, which takes the Wiener filtering process
into account. We combined the proposed regularization with
Discriminative NMF basis training approach and derived a
computationally efficient algorithm based on majorization-
minimization principle. The experimental results showed that
the proposed algorithm outperformed SNMF, DNMF and
previously proposed MGCRNMF in SDR, SIR and MFCC
distance improvements, which showed the effectiveness of
the proposed method.
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